# metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## *trans*-Dichloridobis[dicyclohexyl-(phenyl)phosphane-*kP*]palladium(II)

#### Andrew R. Burgoyne, Reinout Meijboom\* and Hezron Ogutu

Research Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524 Auckland Park, Johannesburg 2006, South Africa Correspondence e-mail: rmeijboom@uj.ac.za

Received 21 February 2012; accepted 7 March 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.021; wR factor = 0.051; data-to-parameter ratio = 11.0.

The title compound,  $[PdCl_2{P(C_6H_{11})_2(C_6H_5)}_2]$ , forms a monomeric complex with a *trans*-square-planar geometry. The Pd-P bond lengths are 2.3343 (5) Å, as the Pd atom lies on an inversion centre, while the Pd-Cl bond lengths are 2.3017 (4) Å. The observed structure was found to be closely related to  $[PdCl_2{P(C_6H_{11})_3}_2]$  [Grushin *et al.* (1994). *Inorg. Chem.* **33**, 4804–4806],  $[PdBr_2{P(C_6H_{11})_3}_2]$  [Clarke *et al.* (2003). *Dalton Trans.* pp. 4393–4394] and  $[PdCl_2P(C_6H_{11})_2-(C_7H_7)]_2$ ] [Vuoti *et al.* (2008). *Eur. J. Inorg. Chem.* pp. 397–407] (C<sub>6</sub>H<sub>11</sub> is cyclohexyl and C<sub>7</sub>H<sub>7</sub> is *o*-tolyl). One of the cyclohexyl rings is disordered with the phenyl ring in a 0.587 (9):413 (9) ratio. Five long-range C-H···Cl interactions were observed within the structure.

#### **Related literature**

For a review on related compounds, see: Spessard & Miessler (1996). For the synthesis of the starting materials, see: Drew & Doyle (1990). For similar R-P<sub>2</sub>PdCl<sub>2</sub> compounds, see: Ogutu & Meijboom (2011); Muller & Meijboom (2010*a*,*b*). For their applications, see: Bedford *et al.* (2004).



a = 9.439 (4) Å

b = 10.095 (4) Å

c = 10.623 (5) Å

#### **Experimental**

| Crystal data                |  |
|-----------------------------|--|
| $[PdCl_2(C_{18}H_{27}P)_2]$ |  |
| $M_r = 726.03$              |  |
| Triclinic, P1               |  |

| $\alpha = 113.115 \ (2)^{\circ}$ |  |
|----------------------------------|--|
| $\beta = 107.321 \ (2)^{\circ}$  |  |
| $\gamma = 91.625 \ (2)^{\circ}$  |  |
| V = 876.5 (7) Å <sup>3</sup>     |  |
| Z = 1                            |  |

Data collection

| Bruker X8 APEXII 4K KappaCCD         |
|--------------------------------------|
| diffractometer                       |
| Absorption correction: multi-scan    |
| (SADABS; Bruker, 2007)               |
| $T_{\min} = 0.885, T_{\max} = 0.918$ |

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.021 & 12 \text{ restraints} \\ wR(F^2) &= 0.051 & H\text{-atom parameters constrained} \\ S &= 1.19 & \Delta\rho_{\text{max}} &= 0.37 \text{ e} \text{ Å}^{-3} \\ 2931 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.38 \text{ e} \text{ Å}^{-3} \end{split}$$

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$   | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-------------------------------|------|-------------------------|--------------|---------------------------|
| $C8-H8B\cdots Cl1$            | 0.97 | 2.91                    | 3.559 (2)    | 125                       |
| $C5-H5\cdots Cl1^{i}$         | 0.93 | 2.94                    | 3.619 (7)    | 131                       |
| C13−H13···Cl1 <sup>ii</sup>   | 0.98 | 2.68                    | 3.254 (11)   | 118                       |
| $C18-H18B\cdots Cl1^{ii}$     | 0.97 | 2.97                    | 3.542 (13)   | 119                       |
| $C15 - H15A \cdots Cl1^{iii}$ | 0.97 | 3.02                    | 3.800 (8)    | 139                       |

Mo  $K\alpha$  radiation  $\mu = 0.80 \text{ mm}^{-1}$ 

 $0.27 \times 0.13 \times 0.11 \text{ mm}$ 

12144 measured reflections 2931 independent reflections

2891 reflections with  $I > 2\sigma(I)$ 

T = 100 K

 $R_{\rm int} = 0.024$ 

Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) -x + 2, -y, -z + 2; (iii) x - 1, y, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT-Plus* (Bruker, 2007); data reduction: *SAINT-Plus* and *XPREP* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

ARB thanks the University of Johannesburg and the South African National Research Foundation for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2455).

#### References

- Bedford, R. B., Cazin, C. S. J. & Holder, D. (2004). Coord. Chem. Rev. 248, 2283–2321.
- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Clarke, M. L., Orpen, A. G., Pringle, P. G. & Turley, E. (2003). *Dalton Trans.* pp. 4393–4394.
- Drew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346-349.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Grushin, V. V., Bensimon, C. & Alper, H. (1994). Inorg. Chem. 33, 4804-4806.
- Muller, A. & Meijboom, R. (2010a). Acta Cryst. E66, m1420.
- Muller, A. & Meijboom, R. (2010b). Acta Cryst. E66, m1463.
- Ogutu, H. & Meijboom, R. (2011). Acta Cryst. E67, m1662.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131– 135. Upper Saddle River, New Jersey: Prentice Hall.
- Vuoti, S., Autio, J., Laitila, M., Haukka, M. & Pursiainen, J. (2008). Eur. J. Inorg. Chem. pp. 397–407.

# supplementary materials

Acta Cryst. (2012). E68, m404 [doi:10.1107/S1600536812010100]

## *trans*-Dichloridobis[dicyclohexyl(phenyl)phosphane-*kP*]palladium(II)

## Andrew R. Burgoyne, Reinout Meijboom and Hezron Ogutu

#### Comment

Complexes involving palladium metal centres are amongst some of the most popular catalytic precursors in organic synthesis due to their catalytic abilities. They are used in carbon-carbon bond formation reactions like the Heck, Stille and Suzuki reactions (Bedford *et al.*, 2004).

 $[PdCl_2(L)_2]$  (*L* = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from  $[PdCl_2(COD)]$ . The title compound, *trans*- $[PdCl_2(C_{18}H_{27}P)_2]$ , crystallizes with the Pd atom on a center of symmetry and each pair of equivalent ligands in a mutually *trans* orientation. The geometry is, therefore, slightly distorted square planar and the Pd atom is not elevated out of the coordinating atom plane. All angles in the coordination polyhedron are close to the ideal value of 90°, with P—Pd—Cl = 89.296 (16)° and P—Pd—Cl<sup>i</sup> = 90.704 (16)°. As required by the crystallographic symmetry, the P—Pd—P<sup>i</sup> and Cl—Pd—Cl<sup>i</sup> angles are 180°. The symmetry code used to define atoms through the inversion point is: (iv) 2 - *x*, -*y*, 2 - *z*.

One of the cyclohexyl rings, C13–C18, in the title compound is disordered with the phenyl ring, C1–C6, over the same positions in a 59:41 (9) occupancy ratio.

The title compound compares well with other closely related  $Pd^{II}$  complexes from the literature containing two chloro and two tertiary phosphine ligands in a *trans* geometry (Muller & Meijboom, 2010*a*, *b*). The title compound, having a Pd —Cl bond length of 2.3017 (4) Å and a Pd—P bond length of 2.3343 (5) Å, fits well into the typical range for complexes of this kind. Notably the title compound did not crystallize as a solvated complex; these type of Pd<sup>II</sup> complexes have a tendency to crystallize as solvates (Ogutu & Meijboom, 2011).

Due to the disorder of the cyclohexyl ring and phenyl ring, the crystilline structure for the title compound forms an isostructure with a variety of  $[PdCl_2(PR_3)_2]$  compounds (R = any combination of aryl and cylcohexyl rings). Notably, the title compound is quintessentially isostructural with:  $[PdCl_2{P(C_6H_{11})_3}_2]$  (Grushin *et al.*, 1994);  $[PdBr_2{P(C_6H_{11})_3}_2]$  (Clarke *et al.*, 2003); and  $[PdCl_2{P(C_6H_{11})_2(C_7H_7)}_2]$  (Vuoti *et al.*, 2008) (( $C_6H_{11}$ ) = cyclohexyl, ( $C_7H_7$ ) = *o*-tolyl). The Pd–P and Pd–X (X = Br and Cl) bond lengths were compared and it was observed that they were all within the same range of 2.3–2.4 Å. The angles between the bonds around the Pd atom were all observed to be approximately right angles.

A weak hydrogen bond exists between C13—H13···Cl1<sup>i</sup> (Symmetry code: -x + 2, -y, -z + 2) with the distance listed in Table 1. Four other longer range hydrogen interactions exist as shown in Table 1.

#### Experimental

Dicyclohexylphenylphosphine (0.05 g, 0.35 mmol) was dissolved in acetone (5 cm<sup>3</sup>). A solution of  $[Pd(COD)Cl_2]$  (0.05 g, 0.17 mmol) in acetone (5 cm<sup>3</sup>) was added to the phosphine solution. The mixture was stirred for 5 minutes, after which the solution was left to crystallize. Yellow crystals of the title compound were obtained. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz, p.p.m.): 7.6–7.5 (*m*, 4H), 7.4 (*m*, 6H), 2.6 (*t*, 4H), 2.1 (*d*, 4H), 1.8–1.7 (*m*, 10H), 1.4–1.2 (*m*, 20H), 1.1–1.0 (*m*, 6H). <sup>31</sup>P{H} NMR (CDCl<sub>3</sub>, 162.0 MHz, p.p.m.): 28.05. IR (cm<sup>-1</sup>): 2925, 2849, 2161, 2023, 1977, 1446, 1433, 1261, 1109,

1011, 848, 773, 700 and 690.

### Refinement

The undisordered quintessential cyclohexyl ring, C7–C12, was used to model the disordered cyclohexyl ring, C1B–C6B, by restraining the two rings to have similar bond lengths and 1,3 atom distances within a standard deviation of 0.02 Å. (SAME command in Shelxtl, Sheldrick, 2008). Atoms C1 and C1B, the two *ipso*–carbons for the disordered phenyl and dicyclohexyl rings, were constrained to have identical ADPs. The phenyl ring has been constrained to resemble an ideal hexagon with C—C distances of 1.39 Å All hydrogen atoms were positioned geometrically with C—H = 0.98 Å for H atoms bonded to tertiary C atoms, 0.97 Å for methylene H atoms, and 0.93 Å for aromatic H atoms. All hydrogen atoms were allowed to ride on their parent atoms with  $U_{iso}(H) = 1.2U_{eq}(C)$ . The remaining highest electron peak was 0.37 at 0.95 Å from P1 and the deepest hole was -0.38 at 0.92 Å from Pd1.

### **Computing details**

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT-Plus* (Bruker, 2007); data reduction: *SAINT-Plus* and *XPREP* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *WinGX* (Farrugia, 1999).



### Figure 1

The structure of the *trans*-dichlorobis (dicyclohexylphenylphosphine)palladium(II) showing 50% probability displacement ellipsoids. Symmetry code to generate molecule through inversiont point: (iv) 2 - x, -y, 2 - z. Disordered and hydrogen atoms were omitted for clarity.



#### Figure 2

The structure of the disordered cyclohexyl and phenyl rings in *trans*-dichlorobis(dicyclohexylphenyl-phosphine)palladium(II), with the lower occupancy atoms shown in blue.

#### trans-Dichloridobis[dicyclohexyl(phenyl)phosphane- κP]palladium(II)

Crystal data

 $[PdCl_{2}(C_{18}H_{27}P)_{2}]$   $M_{r} = 726.03$ Triclinic,  $P\overline{1}$ Hall symbol: -P 1 a = 9.439 (4) Å b = 10.095 (4) Å c = 10.623 (5) Å a = 113.115 (2)°  $\beta = 107.321$  (2)°  $\gamma = 91.625$  (2)° V = 876.5 (7) Å<sup>3</sup>

#### Data collection

Bruker X8 APEXII 4K KappaCCD1214diffractometer2931Radiation source: fine-focus sealed tube2891Graphite monochromator $R_{int} =$  $\varphi$  and  $\omega$  scans $\theta_{max} =$ Absorption correction: multi-scanh = -(SADABS; Bruker, 2007)k = - $T_{min} = 0.885, T_{max} = 0.918$ l = -

Z = 1 F(000) = 380  $D_x = 1.375 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71069 \text{ Å}$ Cell parameters from 9929 reflections  $\theta = 2.2-24.9^{\circ}$   $\mu = 0.80 \text{ mm}^{-1}$ T = 100 K Conical, yellow  $0.27 \times 0.13 \times 0.11 \text{ mm}$ 

12144 measured reflections 2931 independent reflections 2891 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.024$  $\theta_{max} = 24.9^{\circ}, \ \theta_{min} = 2.2^{\circ}$  $h = -10 \rightarrow 11$  $k = -11 \rightarrow 11$  $l = -11 \rightarrow 12$  Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.021$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.051$                               | neighbouring sites                                         |
| S = 1.19                                        | H-atom parameters constrained                              |
| 2931 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0125P)^2 + 0.5911P]$          |
| 266 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 12 restraints                                   | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.37 \text{ e } \text{\AA}^{-3}$  |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$ |

#### Special details

**Experimental**. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 10 s/frame. A collection frame width of  $0.5^{\circ}$  covering up to  $\theta = 24.9^{\circ}$  resulted in 97% completeness accomplished.

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| x           | у                                                                                                                                                                                                                                                                 | Ζ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $U_{ m iso}$ */ $U_{ m eq}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Occ. (<1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.8288 (11) | -0.1156 (10)                                                                                                                                                                                                                                                      | 0.6237 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0215 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.587 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.9177 (12) | -0.2245 (12)                                                                                                                                                                                                                                                      | 0.6081 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.025 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.587 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.9665      | -0.2441                                                                                                                                                                                                                                                           | 0.6874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.030*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.587 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.9336 (9)  | -0.3042 (9)                                                                                                                                                                                                                                                       | 0.4741 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.030 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.587 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.9931      | -0.3770                                                                                                                                                                                                                                                           | 0.4637                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.036*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.587 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.8606 (8)  | -0.2749 (8)                                                                                                                                                                                                                                                       | 0.3556 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.038 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.587 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.8713      | -0.3282                                                                                                                                                                                                                                                           | 0.2660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.045*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.587 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.7718 (9)  | -0.1660 (9)                                                                                                                                                                                                                                                       | 0.3712 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.040 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.587 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.7229      | -0.1465                                                                                                                                                                                                                                                           | 0.2920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.048*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.587 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.7558 (7)  | -0.0864 (7)                                                                                                                                                                                                                                                       | 0.5053 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0294 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.587 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.6964      | -0.0135                                                                                                                                                                                                                                                           | 0.5157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.035*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.587 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.8337 (16) | -0.1023 (17)                                                                                                                                                                                                                                                      | 0.6235 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0215 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.413 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.9155      | -0.0324                                                                                                                                                                                                                                                           | 0.6342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.026*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.413 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.892 (2)   | -0.2484 (19)                                                                                                                                                                                                                                                      | 0.5907 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.021 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.413 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.8132      | -0.3233                                                                                                                                                                                                                                                           | 0.5748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.025*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.413 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.9771      | -0.2397                                                                                                                                                                                                                                                           | 0.6732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.025*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.413 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.9388 (17) | -0.2926 (17)                                                                                                                                                                                                                                                      | 0.4549 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.027 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.413 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.0238      | -0.2223                                                                                                                                                                                                                                                           | 0.4747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.033*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.413 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.9705      | -0.3873                                                                                                                                                                                                                                                           | 0.4327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.033*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.413 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.8129 (12) | -0.2994 (11)                                                                                                                                                                                                                                                      | 0.3271 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.023 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.413 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.7318      | -0.3765                                                                                                                                                                                                                                                           | 0.3012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.027*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.413 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.8477      | -0.3228                                                                                                                                                                                                                                                           | 0.2448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.027*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.413 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.7549 (14) | -0.1569 (12)                                                                                                                                                                                                                                                      | 0.3589 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.023 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.413 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | x $0.8288 (11)$ $0.9177 (12)$ $0.9665$ $0.9336 (9)$ $0.9931$ $0.8606 (8)$ $0.8713$ $0.7718 (9)$ $0.7229$ $0.7558 (7)$ $0.6964$ $0.8337 (16)$ $0.9155$ $0.892 (2)$ $0.8132$ $0.9771$ $0.9388 (17)$ $1.0238$ $0.9705$ $0.8129 (12)$ $0.7318$ $0.8477$ $0.7549 (14)$ | x $y$ $0.8288 (11)$ $-0.1156 (10)$ $0.9177 (12)$ $-0.2245 (12)$ $0.9665$ $-0.2441$ $0.9336 (9)$ $-0.3042 (9)$ $0.9931$ $-0.3770$ $0.8606 (8)$ $-0.2749 (8)$ $0.8713$ $-0.3282$ $0.7718 (9)$ $-0.1660 (9)$ $0.7229$ $-0.1465$ $0.7558 (7)$ $-0.0864 (7)$ $0.6964$ $-0.0135$ $0.8337 (16)$ $-0.1023 (17)$ $0.9155$ $-0.0324$ $0.892 (2)$ $-0.2484 (19)$ $0.8132$ $-0.3233$ $0.9771$ $-0.2926 (17)$ $1.0238$ $-0.2223$ $0.9705$ $-0.3873$ $0.8129 (12)$ $-0.2994 (11)$ $0.7318$ $-0.3765$ $0.8477$ $-0.3228$ $0.7549 (14)$ $-0.1569 (12)$ | x $y$ $z$ $0.8288 (11)$ $-0.1156 (10)$ $0.6237 (7)$ $0.9177 (12)$ $-0.2245 (12)$ $0.6081 (9)$ $0.9665$ $-0.2441$ $0.6874$ $0.9336 (9)$ $-0.3042 (9)$ $0.4741 (10)$ $0.9931$ $-0.3770$ $0.4637$ $0.8606 (8)$ $-0.2749 (8)$ $0.3556 (8)$ $0.8713$ $-0.3282$ $0.2660$ $0.7718 (9)$ $-0.1660 (9)$ $0.3712 (7)$ $0.7229$ $-0.1465$ $0.2920$ $0.7558 (7)$ $-0.0864 (7)$ $0.5053 (8)$ $0.6964$ $-0.0135$ $0.5157$ $0.8337 (16)$ $-0.1023 (17)$ $0.6235 (11)$ $0.9155$ $-0.0324$ $0.6342$ $0.892 (2)$ $-0.2484 (19)$ $0.5907 (14)$ $0.8132$ $-0.2397$ $0.6732$ $0.9388 (17)$ $-0.2926 (17)$ $0.4549 (15)$ $1.0238$ $-0.2223$ $0.4747$ $0.9705$ $-0.3873$ $0.4327$ $0.8129 (12)$ $-0.2994 (11)$ $0.3271 (10)$ $0.7318$ $-0.3765$ $0.3012$ $0.8477$ $-0.3228$ $0.2448$ $0.7549 (14)$ $-0.1569 (12)$ $0.3589 (11)$ | xyz $U_{iso}^*/U_{eq}$ 0.8288 (11)-0.1156 (10)0.6237 (7)0.0215 (7)0.9177 (12)-0.2245 (12)0.6081 (9)0.025 (3)0.9665-0.24410.68740.030*0.9336 (9)-0.3042 (9)0.4741 (10)0.030 (3)0.9931-0.37700.46370.036*0.8606 (8)-0.2749 (8)0.3556 (8)0.038 (2)0.8713-0.32820.26600.045*0.7718 (9)-0.1660 (9)0.3712 (7)0.040 (4)0.7229-0.14650.29200.048*0.7558 (7)-0.0864 (7)0.5053 (8)0.0294 (15)0.6964-0.01350.51570.035*0.8337 (16)-0.1023 (17)0.6235 (11)0.0215 (7)0.9155-0.03240.63420.026*0.892 (2)-0.2484 (19)0.5907 (14)0.021 (3)0.8132-0.32330.57480.025*0.9771-0.2926 (17)0.4549 (15)0.027*0.9388 (17)-0.2926 (17)0.4549 (15)0.027 (3)1.0238-0.22230.47470.033*0.9705-0.38730.43270.033*0.9705-0.38730.43270.033*0.8129 (12)-0.2994 (11)0.3271 (10)0.022 (2)0.7318-0.37650.30120.027*0.8477-0.32280.24480.027*0.7549 (14)-0.1569 (12)0.3589 (11)0.023 (3) |

| H5BA          | 0.6712              | -0.1655              | 0.2751      | 0.028*          | 0.413 (9)            |
|---------------|---------------------|----------------------|-------------|-----------------|----------------------|
| H5BB          | 0.8337              | -0.0811              | 0.3773      | 0.028*          | 0.413 (9)            |
| C6B           | 0.7032 (10)         | -0.1141 (10)         | 0.4917 (11) | 0.0224 (18)     | 0.413 (9)            |
| H6BA          | 0.6677              | -0.0212              | 0.5118      | 0.027*          | 0.413 (9)            |
| H6BB          | 0.6207              | -0.1871              | 0.4718      | 0.027*          | 0.413 (9)            |
| C7            | 0.7420 (2)          | 0.1499 (2)           | 0.8114 (2)  | 0.0247 (4)      |                      |
| H7            | 0.6498              | 0.1300               | 0.7292      | 0.030*          |                      |
| C8            | 0.8584 (3)          | 0.2478 (2)           | 0.8001 (2)  | 0.0335 (5)      |                      |
| H8A           | 0.8772              | 0.1976               | 0.7093      | 0.040*          |                      |
| H8B           | 0.9522              | 0.2690               | 0.8792      | 0.040*          |                      |
| C9            | 0.8040 (3)          | 0.3903 (2)           | 0.8064 (2)  | 0.0355 (5)      |                      |
| H9A           | 0.8816              | 0.4529               | 0.8034      | 0.043*          |                      |
| H9B           | 0.7152              | 0.3697               | 0.7224      | 0.043*          |                      |
| C10           | 0.7666 (3)          | 0.4687 (2)           | 0.9438 (2)  | 0.0353 (5)      |                      |
| H10A          | 0.8579              | 0.4988               | 1.0275      | 0.042*          |                      |
| H10B          | 0 7267              | 0 5558               | 0 9424      | 0.042*          |                      |
| C11           | 0.6531(3)           | 0.3725(2)            | 0.9585(3)   | 0.0365(5)       |                      |
| H11A          | 0.5577              | 0.3531               | 0.8818      | 0.044*          |                      |
| HIIR          | 0.6378              | 0.4236               | 1 0508      | 0.044*          |                      |
| C12           | 0.0378<br>0.7038(2) | 0.4230<br>0.2278 (2) | 1.0508      | 0.0788 (4)      |                      |
|               | 0.7038 (2)          | 0.2278 (2)           | 0.9498 (2)  | 0.0288 (4)      |                      |
| П12А<br>1112D | 0.0242              | 0.1058               | 0.9309      | 0.035*          |                      |
|               | 0.7910              | 0.2439               | 1.0559      | $0.033^{\circ}$ | 0.597(0)             |
| C13           | 0.6240 (7)          | -0.1337 (11)         | 0.7724 (14) | 0.01/(2)        | 0.587 (9)            |
| HI3           | 0.6085              | -0.0958              | 0.8667      | 0.020*          | 0.587 (9)            |
| C14           | 0.4830 (6)          | -0.1221 (6)          | 0.6629 (6)  | 0.0260 (12)     | 0.587 (9)            |
| HI4A          | 0.4726              | -0.0202              | 0.6898      | 0.031*          | 0.587 (9)            |
| H14B          | 0.4928              | -0.1611              | 0.5672      | 0.031*          | 0.587 (9)            |
| C15           | 0.3432 (8)          | -0.2058 (7)          | 0.6579 (13) | 0.038 (2)       | 0.587 (9)            |
| H15A          | 0.3289              | -0.1617              | 0.7515      | 0.046*          | 0.587 (9)            |
| H15B          | 0.2557              | -0.1994              | 0.5855      | 0.046*          | 0.587 (9)            |
| C16           | 0.3565 (8)          | -0.3654 (7)          | 0.6210 (8)  | 0.0311 (14)     | 0.587 (9)            |
| H16A          | 0.2694              | -0.4143              | 0.6255      | 0.037*          | 0.587 (9)            |
| H16B          | 0.3591              | -0.4128              | 0.5228      | 0.037*          | 0.587 (9)            |
| C17           | 0.4985 (10)         | -0.3777 (10)         | 0.7268 (16) | 0.029 (2)       | 0.587 (9)            |
| H17A          | 0.5083              | -0.4798              | 0.6985      | 0.035*          | 0.587 (9)            |
| H17B          | 0.4903              | -0.3397              | 0.8232      | 0.035*          | 0.587 (9)            |
| C18           | 0.6381 (8)          | -0.2948 (9)          | 0.7318 (17) | 0.023 (3)       | 0.587 (9)            |
| H18A          | 0.6513              | -0.3373              | 0.6377      | 0.028*          | 0.587 (9)            |
| H18B          | 0.7258              | -0.3027              | 0.8029      | 0.028*          | 0.587 (9)            |
| C13B          | 0.6193 (7)          | -0.1534 (11)         | 0.7533 (16) | 0.027 (5)       | 0.413 (9)            |
| C14B          | 0.4787 (8)          | -0.1111 (7)          | 0.7229 (11) | 0.0331 (19)     | 0.413 (9)            |
| H14C          | 0.4707              | -0.0176              | 0.7283      | 0.040*          | 0.413 (9)            |
| C15B          | 0.3501(7)           | -0.2087(9)           | 0 6846 (13) | 0.045(5)        | 0 413 (9)            |
| H15C          | 0.2560              | -0.1804              | 0 6642      | 0.054*          | 0 413 (9)            |
| C16B          | 0.3620 (11)         | -0.3485(8)           | 0.6766 (10) | 0.033 (2)       | 0 413 (9)            |
| HI6C          | 0.2760              | -0.4137              | 0.6509      | 0.040*          | 0.413(0)             |
| C17B          | 0.5026 (14)         | -0 3907 (0)          | 0.0000      | 0.035 (5)       | 0.413(0)             |
|               | 0.5020 (14)         | -0.4843              | 0.7016      | 0.033 (3)       | 0.713(9)<br>0.412(0) |
|               | 0.3100              | 0.4043               | 0.7010      | 0.042           | 0.413 (9)            |
| CIAR          | 0.0312 (10)         | -0.2932 (14)         | 0.745 (2)   | 0.032 (6)       | 0.413 (9)            |

# supplementary materials

| H18C | 0.7253      | -0.3215      | 0.7657      | 0.038*       | 0.413 (9) |
|------|-------------|--------------|-------------|--------------|-----------|
| P1   | 0.79648 (5) | -0.02795 (5) | 0.79688 (5) | 0.01688 (11) |           |
| C11  | 1.15978 (5) | 0.06458 (5)  | 0.89925 (5) | 0.02496 (11) |           |
| Pd1  | 1.0000      | 0.0000       | 1.0000      | 0.01502 (8)  |           |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$     | U <sup>22</sup> | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------|--------------|-----------------|--------------|--------------|--------------|--------------|
| C1   | 0.0227 (11)  | 0.0238 (17)     | 0.0172 (9)   | 0.0024 (11)  | 0.0065 (8)   | 0.0079 (9)   |
| C2   | 0.022 (4)    | 0.026 (4)       | 0.022 (3)    | -0.002(3)    | 0.004 (3)    | 0.006 (3)    |
| C3   | 0.024 (3)    | 0.030 (3)       | 0.027 (4)    | 0.001 (2)    | 0.006 (3)    | 0.005 (3)    |
| C4   | 0.032 (5)    | 0.046 (4)       | 0.025 (4)    | -0.004 (3)   | 0.017 (3)    | 0.001 (3)    |
| C5   | 0.040 (5)    | 0.059 (7)       | 0.024 (4)    | 0.000 (4)    | 0.009 (3)    | 0.022 (4)    |
| C6   | 0.030 (4)    | 0.033 (3)       | 0.029 (3)    | 0.005 (3)    | 0.012 (3)    | 0.015 (2)    |
| C1B  | 0.0227 (11)  | 0.0238 (17)     | 0.0172 (9)   | 0.0024 (11)  | 0.0065 (8)   | 0.0079 (9)   |
| C2B  | 0.022 (5)    | 0.020 (5)       | 0.016 (4)    | 0.005 (5)    | 0.004 (3)    | 0.006 (3)    |
| C3B  | 0.036 (6)    | 0.034 (5)       | 0.018 (5)    | 0.015 (4)    | 0.016 (4)    | 0.012 (4)    |
| C4B  | 0.027 (5)    | 0.026 (4)       | 0.015 (3)    | 0.001 (4)    | 0.007 (4)    | 0.009 (3)    |
| C5B  | 0.033 (5)    | 0.023 (5)       | 0.012 (4)    | 0.008 (4)    | 0.007 (3)    | 0.006 (4)    |
| C6B  | 0.023 (5)    | 0.026 (4)       | 0.016 (3)    | 0.003 (3)    | 0.002 (4)    | 0.010 (3)    |
| C7   | 0.0291 (10)  | 0.0221 (9)      | 0.0232 (9)   | 0.0069 (8)   | 0.0079 (8)   | 0.0102 (8)   |
| C8   | 0.0487 (13)  | 0.0264 (10)     | 0.0347 (11)  | 0.0097 (9)   | 0.0222 (10)  | 0.0158 (9)   |
| C9   | 0.0496 (14)  | 0.0271 (10)     | 0.0358 (12)  | 0.0089 (9)   | 0.0148 (10)  | 0.0187 (9)   |
| C10  | 0.0481 (14)  | 0.0232 (10)     | 0.0356 (11)  | 0.0112 (9)   | 0.0138 (10)  | 0.0130 (9)   |
| C11  | 0.0446 (13)  | 0.0268 (10)     | 0.0399 (12)  | 0.0117 (9)   | 0.0209 (11)  | 0.0106 (9)   |
| C12  | 0.0359 (11)  | 0.0230 (9)      | 0.0298 (10)  | 0.0055 (8)   | 0.0158 (9)   | 0.0098 (8)   |
| C13  | 0.023 (4)    | 0.013 (2)       | 0.013 (3)    | 0.0053 (19)  | 0.002 (2)    | 0.007 (2)    |
| C14  | 0.024 (2)    | 0.029 (2)       | 0.028 (3)    | 0.0036 (15)  | 0.007 (2)    | 0.017 (2)    |
| C15  | 0.033 (4)    | 0.026 (4)       | 0.054 (3)    | 0.008 (3)    | 0.009 (3)    | 0.019 (3)    |
| C16  | 0.027 (2)    | 0.031 (2)       | 0.034 (4)    | -0.0029 (17) | 0.008 (3)    | 0.016 (2)    |
| C17  | 0.025 (5)    | 0.025 (4)       | 0.043 (4)    | 0.003 (3)    | 0.013 (3)    | 0.019 (3)    |
| C18  | 0.019 (4)    | 0.020 (5)       | 0.031 (4)    | -0.004 (3)   | 0.008 (3)    | 0.011 (3)    |
| C13B | 0.020 (5)    | 0.033 (8)       | 0.021 (6)    | -0.005 (4)   | 0.010 (4)    | 0.004 (4)    |
| C14B | 0.034 (3)    | 0.026 (3)       | 0.044 (5)    | 0.007 (2)    | 0.018 (4)    | 0.015 (4)    |
| C15B | 0.011 (5)    | 0.063 (9)       | 0.065 (8)    | 0.003 (4)    | 0.011 (4)    | 0.034 (5)    |
| C16B | 0.036 (4)    | 0.036 (4)       | 0.029 (5)    | -0.003 (3)   | 0.014 (4)    | 0.012 (4)    |
| C17B | 0.043 (9)    | 0.023 (6)       | 0.039 (7)    | 0.001 (5)    | 0.015 (5)    | 0.011 (4)    |
| C18B | 0.041 (9)    | 0.031 (8)       | 0.034 (7)    | 0.020 (6)    | 0.017 (6)    | 0.020 (6)    |
| P1   | 0.0191 (2)   | 0.0180 (2)      | 0.0148 (2)   | 0.00359 (17) | 0.00545 (18) | 0.00827 (17) |
| Cl1  | 0.0231 (2)   | 0.0357 (2)      | 0.0193 (2)   | 0.00003 (18) | 0.00788 (18) | 0.01451 (19) |
| Pd1  | 0.01700 (11) | 0.01711 (11)    | 0.01244 (10) | 0.00288 (7)  | 0.00508 (7)  | 0.00760 (7)  |

## Geometric parameters (Å, °)

| C1—C2 | 1.3900    | C10—H10A | 0.9700    |
|-------|-----------|----------|-----------|
| C1—C6 | 1.3900    | C10—H10B | 0.9700    |
| C1—P1 | 1.825 (7) | C11—C12  | 1.527 (3) |
| C2—C3 | 1.3900    | C11—H11A | 0.9700    |
| С2—Н2 | 0.9300    | C11—H11B | 0.9700    |
| C3—C4 | 1.3900    | C12—H12A | 0.9700    |
|       |           |          |           |

| С3—Н3    | 0.9300      | C12—H12B       | 0.9700       |
|----------|-------------|----------------|--------------|
| C4—C5    | 1.3900      | C13—C14        | 1.528 (8)    |
| C4—H4    | 0.9300      | C13—C18        | 1.531 (9)    |
| C5—C6    | 1.3900      | C13—P1         | 1.813 (7)    |
| С5—Н5    | 0.9300      | С13—Н13        | 0.9800       |
| С6—Н6    | 0.9300      | C14—C15        | 1.523 (8)    |
| C1B—C6B  | 1.524 (10)  | C14—H14A       | 0.9700       |
| C1B—C2B  | 1.534 (9)   | C14—H14B       | 0.9700       |
| C1B—P1   | 1.843 (10)  | C15—C16        | 1.519(7)     |
| C1B—H1B  | 0.9800      | С15—Н15А       | 0.9700       |
| C2B—C3B  | 1.538 (11)  | C15—H15B       | 0.9700       |
| C2B—H2BA | 0.9700      | C16—C17        | 1.516 (10)   |
| C2B—H2BB | 0.9700      | C16—H16A       | 0.9700       |
| C3B—C4B  | 1.491 (12)  | C16—H16B       | 0.9700       |
| СЗВ—НЗВА | 0.9700      | C17—C18        | 1.517 (8)    |
| C3B—H3BB | 0.9700      | С17—Н17А       | 0.9700       |
| C4B—C5B  | 1.503 (10)  | С17—Н17В       | 0.9700       |
| C4B—H4BA | 0.9700      | C18—H18A       | 0.9700       |
| C4B—H4BB | 0.9700      | C18—H18B       | 0.9700       |
| C5B—C6B  | 1.536 (9)   | C13B—C14B      | 1.3900       |
| C5B—H5BA | 0.9700      | C13B—C18B      | 1.3900       |
| C5B—H5BB | 0.9700      | C13B—P1        | 1.891 (7)    |
| C6B—H6BA | 0.9700      | C14B—C15B      | 1.3900       |
| C6B—H6BB | 0.9700      | C14B—H14C      | 0.9300       |
| C7—C8    | 1.520 (3)   | C15B—C16B      | 1.3900       |
| C7—C12   | 1.528 (3)   | C15B—H15C      | 0.9300       |
| C7—P1    | 1.8421 (19) | C16B—C17B      | 1.3900       |
| C7—H7    | 0.9800      | C16B—H16C      | 0.9300       |
| C8—C9    | 1.524 (3)   | C17B—C18B      | 1.3900       |
| C8—H8A   | 0.9700      | C17B—H17C      | 0.9300       |
| C8—H8B   | 0.9700      | C18B—H18C      | 0.9300       |
| C9—C10   | 1.516 (3)   | P1—Pd1         | 2.3343 (5)   |
| C9—H9A   | 0.9700      | Cl1—Pd1        | 2.3017 (4)   |
| C9—H9B   | 0.9700      | $Pd1-Cl1^{i}$  | 2.3017 (4)   |
| C10—C11  | 1.507 (3)   | $Pd1 - P1^{i}$ | 2.3343 (5)   |
|          |             |                | 2.000.00 (0) |
| C2—C1—C6 | 120.0       | C12—C11—H11B   | 109.2        |
| C2—C1—P1 | 117.9 (5)   | H11A—C11—H11B  | 107.9        |
| C6—C1—P1 | 121.8 (5)   | C11—C12—C7     | 110.85 (17)  |
| C1—C2—C3 | 120.0       | C11—C12—H12A   | 109.5        |
| C1—C2—H2 | 120.0       | C7—C12—H12A    | 109.5        |
| С3—С2—Н2 | 120.0       | C11—C12—H12B   | 109.5        |
| C4—C3—C2 | 120.0       | C7—C12—H12B    | 109.5        |
| С4—С3—Н3 | 120.0       | H12A—C12—H12B  | 108.1        |
| С2—С3—Н3 | 120.0       | C14—C13—C18    | 109.4 (6)    |
| C3—C4—C5 | 120.0       | C14—C13—P1     | 114.9 (5)    |
| С3—С4—Н4 | 120.0       | C18—C13—P1     | 111.5 (5)    |
| С5—С4—Н4 | 120.0       | C14—C13—H13    | 106.9        |
| C6—C5—C4 | 120.0       | C18—C13—H13    | 106.9        |

| С6—С5—Н5      | 120.0       | P1—C13—H13     | 106.9     |
|---------------|-------------|----------------|-----------|
| С4—С5—Н5      | 120.0       | C15—C14—C13    | 110.9 (6) |
| C5—C6—C1      | 120.0       | C15—C14—H14A   | 109.5     |
| С5—С6—Н6      | 120.0       | C13—C14—H14A   | 109.5     |
| С1—С6—Н6      | 120.0       | C15—C14—H14B   | 109.5     |
| C6B—C1B—C2B   | 109.7 (7)   | C13—C14—H14B   | 109.5     |
| C6B—C1B—P1    | 114.9 (8)   | H14A—C14—H14B  | 108.0     |
| C2B—C1B—P1    | 113.6 (8)   | C16—C15—C14    | 111.4 (5) |
| C6B—C1B—H1B   | 106.0       | C16—C15—H15A   | 109.4     |
| C2B—C1B—H1B   | 106.0       | C14—C15—H15A   | 109.4     |
| P1—C1B—H1B    | 106.0       | C16—C15—H15B   | 109.4     |
| C1B—C2B—C3B   | 110.2 (6)   | C14—C15—H15B   | 109.4     |
| C1B—C2B—H2BA  | 109.6       | H15A—C15—H15B  | 108.0     |
| C3B—C2B—H2BA  | 109.6       | C17—C16—C15    | 110.2 (6) |
| C1B—C2B—H2BB  | 109.6       | C17—C16—H16A   | 109.6     |
| C3B—C2B—H2BB  | 109.6       | C15—C16—H16A   | 109.6     |
| H2BA—C2B—H2BB | 108.1       | C17—C16—H16B   | 109.6     |
| C4B—C3B—C2B   | 111.5 (7)   | C15—C16—H16B   | 109.6     |
| С4В—С3В—Н3ВА  | 109.3       | H16A—C16—H16B  | 108.1     |
| С2В—С3В—Н3ВА  | 109.3       | C16—C17—C18    | 112.1 (6) |
| C4B—C3B—H3BB  | 109.3       | C16—C17—H17A   | 109.2     |
| С2В—С3В—Н3ВВ  | 109.3       | C18—C17—H17A   | 109.2     |
| НЗВА—СЗВ—НЗВВ | 108.0       | C16—C17—H17B   | 109.2     |
| C3B—C4B—C5B   | 111.3 (8)   | C18—C17—H17B   | 109.2     |
| C3B—C4B—H4BA  | 109.4       | H17A—C17—H17B  | 107.9     |
| C5B—C4B—H4BA  | 109.4       | C17—C18—C13    | 110.4 (6) |
| C3B—C4B—H4BB  | 109.4       | C17—C18—H18A   | 109.6     |
| C5B—C4B—H4BB  | 109.4       | C13—C18—H18A   | 109.6     |
| H4BA—C4B—H4BB | 108.0       | C17—C18—H18B   | 109.6     |
| C4B—C5B—C6B   | 110.8 (7)   | C13—C18—H18B   | 109.6     |
| C4B—C5B—H5BA  | 109.5       | H18A—C18—H18B  | 108.1     |
| C6B—C5B—H5BA  | 109.5       | C14B—C13B—C18B | 120.0     |
| C4B—C5B—H5BB  | 109.5       | C14B—C13B—P1   | 121.5 (5) |
| C6B—C5B—H5BB  | 109.5       | C18B—C13B—P1   | 118.4 (5) |
| H5BA—C5B—H5BB | 108.1       | C15B—C14B—C13B | 120.0     |
| C1B—C6B—C5B   | 109.8 (8)   | C15B—C14B—H14C | 120.0     |
| C1B—C6B—H6BA  | 109.7       | C13B—C14B—H14C | 120.0     |
| C5B—C6B—H6BA  | 109.7       | C16B—C15B—C14B | 120.0     |
| C1B—C6B—H6BB  | 109.7       | C16B—C15B—H15C | 120.0     |
| C5B—C6B—H6BB  | 109.7       | C14B—C15B—H15C | 120.0     |
| H6BA—C6B—H6BB | 108.2       | C15B—C16B—C17B | 120.0     |
| C8—C7—C12     | 111.13 (16) | C15B—C16B—H16C | 120.0     |
| C8—C7—P1      | 113.28 (14) | C17B—C16B—H16C | 120.0     |
| C12—C7—P1     | 111.08 (13) | C18B—C17B—C16B | 120.0     |
| С8—С7—Н7      | 107.0       | C18B—C17B—H17C | 120.0     |
| С12—С7—Н7     | 107.0       | C16B—C17B—H17C | 120.0     |
| Р1—С7—Н7      | 107.0       | C17B—C18B—C13B | 120.0     |
| C7—C8—C9      | 110.74 (18) | C17B—C18B—H18C | 120.0     |
| С7—С8—Н8А     | 109.5       | C13B—C18B—H18C | 120.0     |

| С9—С8—Н8А     | 109.5       | C13—P1—C1                      | 104.6 (6)   |
|---------------|-------------|--------------------------------|-------------|
| С7—С8—Н8В     | 109.5       | C13—P1—C7                      | 103.3 (3)   |
| С9—С8—Н8В     | 109.5       | C1—P1—C7                       | 107.4 (3)   |
| H8A—C8—H8B    | 108.1       | C13—P1—C1B                     | 108.0 (6)   |
| C10—C9—C8     | 111.03 (17) | C7—P1—C1B                      | 103.5 (5)   |
| С10—С9—Н9А    | 109.4       | C1—P1—C13B                     | 98.7 (5)    |
| С8—С9—Н9А     | 109.4       | C7—P1—C13B                     | 106.9 (3)   |
| С10—С9—Н9В    | 109.4       | C1B—P1—C13B                    | 102.1 (7)   |
| С8—С9—Н9В     | 109.4       | C13—P1—Pd1                     | 115.0 (3)   |
| Н9А—С9—Н9В    | 108.0       | C1—P1—Pd1                      | 114.7 (3)   |
| C11—C10—C9    | 111.58 (18) | C7—P1—Pd1                      | 110.95 (6)  |
| C11-C10-H10A  | 109.3       | C1B—P1—Pd1                     | 114.8 (4)   |
| C9—C10—H10A   | 109.3       | C13B—P1—Pd1                    | 117.3 (4)   |
| C11-C10-H10B  | 109.3       | Cl1—Pd1—Cl1 <sup>i</sup>       | 180.0       |
| C9—C10—H10B   | 109.3       | Cl1—Pd1—P1                     | 89.296 (16) |
| H10A—C10—H10B | 108.0       | Cl1 <sup>i</sup> —Pd1—P1       | 90.704 (16) |
| C10-C11-C12   | 112.03 (18) | Cl1—Pd1—P1 <sup>i</sup>        | 90.704 (16) |
| C10-C11-H11A  | 109.2       | $Cl1^{i}$ —Pd1—P1 <sup>i</sup> | 89.296 (16) |
| C12—C11—H11A  | 109.2       | P1—Pd1—P1 <sup>i</sup>         | 180.0       |
| C10-C11-H11B  | 109.2       |                                |             |

Symmetry code: (i) -x+2, -y, -z+2.

## Hydrogen-bond geometry (Å, °)

| D—H···A                        | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|--------------------------------|-------------|--------------|--------------|------------|
| C8—H8 <i>B</i> …Cl1            | 0.97        | 2.91         | 3.559 (2)    | 125        |
| C5—H5···Cl1 <sup>ii</sup>      | 0.93        | 2.94         | 3.619 (7)    | 131        |
| C13—H13···Cl1 <sup>i</sup>     | 0.98        | 2.68         | 3.254 (11)   | 118        |
| C18—H18B····Cl1 <sup>i</sup>   | 0.97        | 2.97         | 3.542 (13)   | 119        |
| C15—H15A····Cl1 <sup>iii</sup> | 0.97        | 3.02         | 3.800 (8)    | 139        |

Symmetry codes: (i) -*x*+2, -*y*, -*z*+2; (ii) -*x*+2, -*y*, -*z*+1; (iii) *x*-1, *y*, *z*.